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Abstract. A fast simulation algorithm for the calculation of multitime correlation functions of open quan-
tum systems is presented. It is demonstrated that any stochastic process which “unravels” the quantum
Master equation can be used for the calculation of matrix elements of reduced Heisenberg picture opera-
tors, and thus for the calculation of multitime correlation functions, by extending the stochastic process to
a doubled Hilbert space. The numerical performance of the stochastic simulation algorithm is investigated
by means of a standard example.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 02.70.Lq Monte Carlo and
statistical methods

1 Introduction

The state of an open quantum system is conventionally
described through a reduced density matrix ρ(t) whose
dynamics is given by a dissipative equation of motion – the
quantum Master equation. From a numerical point of view
this formalism has a major drawback: for a system whose
state is described in a N -dimensional Hilbert spaceH, the
quantum Master equation is a set of N(N + 1)/2 coupled
differential equations. Hence the numerical evaluation of
the quantum Master equation is in practice not feasible
for large systems [1].
This difficulty does not arise in the stochastic wave

function approach to open systems [2–9]: here, the state
of an open quantum system is described by a stochas-
tic wave function ψ(t) ∈ H, i.e., by a N -dimensional
state vector. The stochastic time evolution of ψ(t) is ei-
ther defined through a stochastic Schrödinger equation
[8,9] (which is a stochastic differential equation) or al-
ternatively through a conditional transition probability
T [ψ, t|ψ0, t0] [6,7], which is the probability density of find-
ing the system in the state ψ at time t ≥ t0 under the
condition that the system is in the state ψ0 at time t0.
The connection to the density matrix formalism is made
through the relation

ρ(t)=

∫
DψDψ∗

∫
Dψ0Dψ

∗
0 |ψ〉〈ψ| T [ψ, t|ψ0, t0]P [ψ0, t0],

(1)
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where P [ψ0, t0] is the probability density of an ensemble of
normalized pure states characterizing some initial density
matrix ρ0 and DψDψ

∗ is the Hilbert space volume ele-
ment [6,7]. The integrals extend over the Hilbert space H.
This relation ensures that one-time expectation values of
any system operators are calculated correctly. Note that
this condition alone does not uniquely specify a stochastic
process. Diffusion type stochastic processes [8,9] as well
as piecewise deterministic jump processes [2–7] have been
proposed in the literature. A unique stochastic process
can only be derived by making further assumptions such
as specifying a certain measurement scheme [10–12].
Especially in quantum optical systems one-time ex-

pectation values of system observables are not the only
measurable quantities: for example, the spectrum of flu-
orescence of a two level system is the Fourier transform
of the two-time correlation function 〈〈σ+(τ)σ−〉〉s in the
stationary state, where σ± denote the pseudo spin oper-
ators of the system. Thus, for a complete description of
open quantum systems it is necessary to introduce Heisen-
berg picture operators. In the density matrix formalism
this concept is well understood [13]: consider the quan-
tum Master equation

ρ̇(t) = L(t)ρ(t), (2)

where the super-operator L(t) is defined as

L(t)ρ(t)=−i [H(t), ρ(t)]

+
1

2

∑
i

γi

{
2Jiρ(t)J

†
i −J

†
i Jiρ(t)−ρ(t)J

†
i Ji

}
. (3)

The operator H(t) is essentially the Hamiltonian of the
isolated system which contributes to the coherent part of



10 H.P. Breuer et al.: Heisenberg picture operators

the dynamics, and the rates γi and the Lindblad opera-
tors Ji describe the dissipative coupling of the system to
its environment through the i-th decay channel. The so-
lution of equation (2) with respect to the initial condition
ρ(t0) = ρ0 can be expressed for t ≥ t0 in terms of the
propagation super-operator V (t, t0) as [14]

ρ(t) = V (t, t0)ρ0, (4)

where V (t, t0) is the solution of the differential equation

d

dt
V (t, t0) = L(t)V (t, t0), (5)

with the initial condition V (t0, t0) = I. For an arbitrary
Schrödinger system operator A the matrix elements of the
reduced Heisenberg picture operator are defined as

At(φ0, ψ0) ≡ 〈φ0, t0|A(t)|ψ0, t0〉

= Trsys

{
AV (t, t0)|ψ0〉〈φ0|

}
. (6)

Equation (6) can be interpreted in the following way: for
the calculation of the matrix element At(φ0, ψ0) start with
the initial “density matrix” |ψ0〉〈φ0| and propagate it up
to the time t. Then calculate the expectation value of A
with respect to the propagated “density matrix”. How-
ever, since |ψ0〉〈φ0| is in general not a positive matrix and
thus not a true density matrix, it can not be character-
ized by a probability density P [ψ0, t0] of normalized pure
states in H (cf. Eq. (1)). Hence a direct application of
the stochastic wave function approach to the calculation
of Heisenberg picture operators is not possible.

2 Heisenberg picture operators in the
stochastic wave function approach

In a closed system where the time evolution of states
is given through the unitary propagator U(t, t0) we can
calculate arbitrary matrix elements At(φ0, ψ0) of a
Heisenberg operator A(t) in the following way (cf. Fig. 1):
propagate φ0 and ψ0 to obtain φ = U(t, t0)φ0 and
ψ = U(t, t0)ψ0, respectively and then evaluate the scalar
product 〈φ|A|ψ〉. This method is easily generalized to the
calculation of matrix elements of a reduced Heisenberg pic-
ture operator, i.e., to open systems: instead of propagating
the state vectors φ0 ∈ H and ψ0 ∈ H separately, we can
construct a stochastic process in the doubled Hilbert space

H̃ = H⊕H which propagates the normalized pair of state
vectors θ0 = (φ0, ψ0)

T/
√
2 ∈ H̃ simultaneously in such a

way that the following condition holds:

At(φ0, ψ0) = 2

∫
DθDθ∗〈φ|A|ψ〉T̃ [θ, t|θ0, t0], (7)

where θ = (φ, ψ)T and we introduced the conditional tran-

sition probability T̃ for the stochastic process in the dou-

bled Hilbert space H̃. Throughout this letter, the super-
script T denotes the transpose of a vector. This condition

eT [(�;  ); tj(�0;  0)=
p

2; t0]

j 0i j i
U (t; t0)

U (t; t0)

h�jAj i

2hh�jAj ii
j 0i j i

j�0i j�i

j�0i j�i

(a) Unitary time evolution

(b) Stochastic time evolution

Fig. 1. Calculation of Heisenberg operator matrix elements:
(a) for a closed system and (b) for an open system.

states that matrix elements of arbitrary Heisenberg op-
erators are calculated correctly. It is important to note
that equation (7) alone does not specify the stochastic
time evolution in the doubled Hilbert space uniquely. In
fact, each stochastic process which can be used to simulate
the quantum Master equation (2) can be extended to the
doubled Hilbert space and used for the calculation of the
matrix elements of arbitrary Heisenberg picture operators.
We will first demonstrate this for the piecewise determin-
istic jump process proposed in [2–7] and then generalize
the result. A derivation of the simulation algorithm for
the stochastic time evolution in the doubled Hilbert space
which is based on a microscopic system-reservoir model
can be found in reference [15].
For the piecewise deterministic jump process the sim-

ulation algorithm reads as follows.
1) Start with the normalized state θ0 = (φ0, ψ0)

T/
√
2

at t0.
2) Draw a random number η1 from a uniform distri-

bution on [0, 1]; this random number will determine the
time of the first jump.
3) Propagate θ0 according to the Schrödinger-type

equation

i
d

ds
θ̂(s) = H̃eff(s)θ̂(s) (8)

where the extensions of the Hamiltonian H and Lindblad
operators Ji to the doubled Hilbert space are defined as

H̃(s) =

(
H(s) 0
0 H(s)

)
, J̃i =

(
Ji 0
0 Ji

)
, (9)

and the non-Hermitian effective Hamiltonian is defined as

H̃eff(s) = H̃(s)−
i

2

∑
i

γiJ̃
†
i J̃i. (10)

4) The time T1 of the first jump is determined by the
condition

η1 = ‖θ̂(T1)‖
2. (11)

5) Select a particular type of jump with probability

γiwi/
∑
i γiwi, where wi = ‖J̃iθ̂(T1)‖

2. The state of the
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system immediately after the first jump is given by

θ(T1) = J̃iθ̂(T1)/‖J̃iθ̂(T1)‖. (12)

6) Draw a second random number η2 to determine the
time T2 of the next jump and propagate θ(T1) according
to the differential equation (8) and so on until s = t.
7) The state of the system at time t is given by

θ(t) ≡ (φ(t), ψ(t))T = θ̂(t)/‖θ̂(t)‖. (13)

The matrix elements of the reduced Heisenberg picture
operator A(t) are then obtained by computing

At(φ0, ψ0) = 2
〈〈
〈φ(t)|A|ψ(t)〉

〉〉
, (14)

where the angular brackets 〈〈· · · 〉〉 denote the average over
the realizations of the stochastic process.
In order to show that this algorithm leads to the cor-

rect result, we introduce the density matrix

ρ̃(t) =

(
ρ̃11(t) ρ̃12(t)
ρ̃21(t) ρ̃22(t)

)
(15)

on the doubled Hilbert space H̃ which is a solution of the
extended quantum Master equation

˙̃ρ(t) =− i
[
H̃(t), ρ̃(t)

]
(16)

+
1

2

∑
i

γi

{
2J̃iρ̃(t)J̃

†
i − J̃

†
i J̃iρ̃(t)− ρ̃(t)J̃

†
i J̃i

}
,

with the initial condition

ρ̃(t0) = |θ0〉〈θ0| ≡
1

2

(
|φ0〉〈φ0| |φ0〉〈ψ0|
|ψ0〉〈φ0| |ψ0〉〈ψ0|

)
. (17)

By definition of the extended operators H̃ and J̃i each
component ρ̃ij(t) which is an operator on H is a solution
of the original quantum Master equation (2). Since ρ̃21(t)
is a solution of equation (2) with the initial condition
ρ̃21(t0) = |ψ0〉〈φ0|/2 the matrix elements At(φ0, ψ0) of a
reduced Heisenberg picture operator A(t) can be written
as (cf. Eq. (6))

At(φ0, ψ0) = 2Trsys

{
Aρ̃21(t)

}
. (18)

Now consider a particular “unraveling” of the extended
quantum Master equation (16) which is characterized by a

conditional transition probability T̃ [θ, t|θ0, t0] in the dou-
bled Hilbert space. For the density matrix ρ̃(t) we then
obtain in analogy to equation (1)

ρ̃(t) =

∫
DθDθ∗ |θ〉〈θ| T̃ [θ, t|θ0, t0], (19)

and hence for ρ̃21(t)

ρ̃21(t) =

∫
DθDθ∗ |ψ〉〈φ| T̃ [θ, t|θ0, t0], (20)

where θ = (φ, ψ)T. By inserting equation (20) into equa-
tion (18) we recover equation (7). Thus we have shown
that matrix elements of reduced Heisenberg picture oper-
ators are calculated correctly (i.e., Eq. (7) holds) if the
stochastic process in the doubled Hilbert space can be
used to simulate the extended quantum Master equation
(16). Since this is the case for the simulation algorithm
presented above we have completed the proof.
It is important to note that the above proof does not

rely on a specific “unraveling” of the quantum Master
equation (16). On the contrary, it is valid for any stochas-
tic process the covariance matrix (see Eq. (19)) of which
is governed by equation (16).

3 Multitime correlation functions

The simulation algorithm in the doubled Hilbert space can
also be used for the calculation of multitime correlation
functions. Consider for example the two-time correlation
function

g(φ0, t1, t2) = 〈φ0, t0|A(t2)B(t1)|φ0, t0〉, (21)

where t1 ≤ t2. Here, the stochastic simulation algorithm
would read as follows.
1) Start in the state φ0 at time t0 and use the stochas-

tic time evolution in the Hilbert space H to obtain the
stochastic wave function φ(t1).
2) Propagate the state

θ(t1) = (φ(t1), Bφ(t1))
T/‖(φ(t1), Bφ(t1))‖ (22)

using the stochastic time evolution in the doubled Hilbert
space to obtain the state vector θ(t2) = (φ(t2), ψ(t2))

T.
The multitime correlation function is then obtained by
computing

g(φ0, t1, t2) =〈〈∥∥(φ(t1), Bφ(t1))∥∥2〈φ(t2)|A|ψ(t2)〉〉〉. (23)
The generalization of this scheme to the calculation of
arbitrary time-ordered multitime correlation functions of
the form

g(φ0, t0, t1, ..., tn, s1, ..., sm) =

〈φ0, t0|A1(t1) · · ·An(tn)Bm(sm) · · ·B1(s1)|φ0, t0〉, (24)

where t0 ≤ · · · ≤ tn, and t0 ≤ s1 ≤ · · · ≤ sm, and Ai and
Bi are arbitrary system operators is straightforward: order
the set of times {t1, · · · tn, s1, · · · sm} and rename them ri
such that r1 < · · · < rq where q is the number of distinct
time points. Then define a set of Schrödinger operators Fl
and Gl as

Fl = A†i , Gl = I, if rl = ti 6= sj for some i and all j,
Gl = I, Fl = Bj , if rl = sj 6= ti for some j and all i,
Gl = A†i , Fl = Bj , if rl = ti = sj for some i and j.

(25)
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The multitime correlation function g(φ0, t0, t1, ...,
tn, s1, ..., sm) is then obtained in the following way.
1) Start with the state φ0 at time t0 and propagate it

up to the time r1 to obtain φ(r1).
2) Propagate the state

θ(r1) = (F1φ(r1), G1φ(r1))
T
/‖(F1φ(r1), G1φ(r1))‖ (26)

to obtain θ(r2) = (φ(r2), ψ(r2))
T.

3) Jump to the state

θ(r2) = (F2φ(r2), G2ψ(r2))
T
/‖(F2φ(r2), G2ψ(r2))‖ (27)

and propagate it up to r3 and so on. g(φ0, t0, t1, ..., tn,
s1, ..., sm) is then given by

g(φ0, t0, t1, ..., tn,s1, ..., sm) =〈〈∥∥(F1φ(r1), G1φ(r1))∥∥2
×
∥∥(F2φ(r2), G2ψ(r2))∥∥2 · · ·

×
∥∥(Fq−1φ(rq−1), Gq−1ψ(rq−1))∥∥2
× 〈φ(rq)|F

†
qGq|ψ((rq)〉

〉〉
. (28)

It is important to note, that also for higher order cor-
relation functions, we only have to propagate two state
vectors.
Finally, let us remark that the choice of the initial con-

dition (23) (or (26), respectively) is not unique. We can
also multiply the operator B by a constant ε and define
the state vector θε(t1) as

θε(t1) = (φ(t1), εBφ(t1))
T/‖(φ(t1), εBφ(t1))‖ (29)

and accordingly the correlation function g(φ0, t1, t2) as

g(φ0, t1, t2)=
1

ε

〈〈∥∥(φ(t1), εBφ(t1))∥∥2〈φε(t2)|A|ψε(t2)〉〉〉,
(30)

where θε(t2) = (φε(t2), ψε(t2))
T is obtained by propagat-

ing θε(t1) according to the simulation algorithm in the
doubled Hilbert space. Again, the unnormalized determin-
istic motion is governed by the equation of motion

i
d

dt
φ̂ε(t) = Heff(t)φ̂ε(t) (31)

i
d

dt
ψ̂ε(t) = Heff(t)ψ̂ε(t) (32)

but in the limit ε→ 0, we find

‖θ̂ε(t)‖ → ‖φ̂ε(t)‖ (33)

wi = ‖J̃iθ̂ε(T )‖
2 → ‖Jiφ̂ε(T )‖

2, (34)

and hence the jumps of the trajectory θε(t) are completely
governed by the jumps of φε(t), which evolves
according to the “usual” stochastic time evolution in H
(cf. Eqs. (11, 12)). In this limit we obtain a procedure
first proposed by Dum et al. in reference [5], which is based
on “probing the system with δ kicks” (see Append. D of
Ref.[5]). For further discussions of this method see for ex-
ample the references [16–18].

Fig. 2. Calculation of the first order correlation function
〈〈σ+(τ )σ−〉〉s for a coherently driven two level atom on res-
onance. This figure shows the relative error versus the CPU
time in seconds for the simulation algorithms proposed in ref-
erence [2] (a), reference [2] (b), and for our algorithm in the
doubled Hilbert space (c). The solid lines represent the mean
square deviation of the numerical solution from the exact so-
lution and the dashed lines show the estimated standard devi-
ation of the numerical solution. In Figure 2d, we compare the
estimated standard deviation for the three algorithms.

4 Numerical results

In order to investigate the numerical performance of our
simulation algorithm, we compare it with the method pro-
posed by Dum et al. in reference [5] and with an alterna-
tive method proposed by Dalibard et al. which is based
on a decomposition of the stochastic trajectory into four
sub-trajectories [2]. Note that all procedures are fully con-
sistent with the quantum regression theorem [14,19] and
hence lead to the same result for the multitime correlation
function. However, the numerical performance of the al-
gorithms is quite different. We demonstrate this by means
of a standard example of quantum optics – the calcula-
tion of the spectrum of resonance fluorescence of a two
level system. In Figures 2a-c we show the computational
time necessary to achieve a given accuracy (measured by
the relative error of the correlation function 〈〈σ+(τ)σ−〉〉s
in the stationary state) for a coherently driven two level
atom with Rabi frequency Ω = 10γ obtained on a RS6000
workstation. The solid lines represent the mean square
deviation of the numerical solution from the exact solu-
tion [20] and the dashed lines show the mean estimated
standard deviation of the numerical solution. Obviously,
the latter quantity provides for all algorithms a very good
measure of the accuracy of the numerical simulation. In
Figure 2d we compare the estimated standard deviation
for the three algorithms. Obviously, the numerical per-
formance of the algorithms proposed by Dum et al. and
our algorithm is quite similar, although the convergence of
our algorithm is smoother. On the other hand, for a given
accuracy the stochastic simulation in the doubled Hilbert
space is by a factor of 3 faster than the algorithm proposed
in reference [2]. We expect this result to be even better for
higher order correlation functions since for a multitime
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correlation function of the type of equation (24) one has
to propagate in general 4n+m−1 different state vectors in
each realization using the method of Castin et al., whereas
in our approach it is only necessary to propagate two state
vectors.
Let us briefly summarize the main results of this letter:

we have shown that starting from a stochastic simulation
algorithm for the quantum Master equation (2) it is pos-
sible to obtain a fast simulation algorithm for the calcula-
tion of matrix elements of arbitrary Heisenberg picture op-
erators and time-ordered multitime correlation functions
by making the substitutions

ψ ∈ H −→ θ ∈ H̃, H −→ H̃, Ji −→ J̃i, (35)

i.e., we replace the stochastic wave function ψ(t) by a
stochastic wave function θ(t) in the doubled Hilbert space
and extend accordingly the operators H and Ji which are
present in the quantum Master equation to the doubled
Hilbert space (cf. Eq. (9)). We emphasize that these re-
placements can be done for any “unraveling” of the quan-
tum Master equation, e.g., also for the quantum state dif-
fusion model [8,9]. The resulting stochastic process in the
doubled Hilbert space is then similar to a process first
proposed by Gisin in reference [21]. However, the latter
process is only well defined, when the initial states φ0 and
ψ0 are non-orthogonal, i.e., if 〈φ0|ψ0〉 6= 0. This problem
does not occur in the ansatz presented here.

References

1. K. Mølmer, Y. Castin, J. Dalibard, J. Opt. Soc. Am. B
10, 524 (1993).

2. J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68,
580 (1992).

3. H. Carmichael, An Open Systems Approach to Quantum
Optics, Lecture Notes in Physics m18 (Springer-Verlag,
Berlin, Heidelberg, New York, 1993).

4. C.W. Gardiner, A.S. Parkins, P. Zoller, Phys. Rev. A 46,
4363 (1992).

5. R. Dum, A.S. Parkins, P. Zoller, C.W. Gardiner, Phys.
Rev. A 46, 4382 (1992).

6. H.P. Breuer, F. Petruccione, Phys. Rev. Lett. 74, 3788
(1995).

7. H.P. Breuer, F. Petruccione, Phys. Rev. E 52, 428 (1995).
8. N. Gisin, I.C. Percival, J. Phys. A 25, 5677 (1992).
9. N. Gisin, I.C. Percival, J. Phys. A 26, 2233 (1993).
10. H.M. Wiseman, G.J. Milburn, Phys. Rev. A 47, 642
(1993).

11. H.M. Wiseman, G.J. Milburn, Phys. Rev. A 47, 1652
(1993).

12. H.P. Breuer, F. Petruccione, Fortschr. Phys. 45, 39 (1997).
13. R. Alicki, K. Lendi, Lecture Notes in Physics: Quantum
Dynamical Semigroups and Applications (Springer-Verlag,
Berlin, Heidelberg, New York, 1987).

14. C.W. Gardiner, Quantum Noise (Springer-Verlag, Berlin;
Heidelberg, New York, 1991).

15. H.P. Breuer, B. Kappler, F. Petruccione, Phys. Rev. A 56,
2334 (1997).
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